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Abstract—Discretization error arising from a finite element
solution of the scalar Helmholtz equation for open-region ge-
ometries is studied for the simple case of scattering from dielec-
tric slabs. In electrically-large homogeneous regions, the pri-
mary source of error is found to be phase error that increases
progressively in a direction away from the boundary where the
excitation is coupled into the computational domain. The error
can be reduced by using smaller cell sizes, employing higher
order polynomial basis functions, or using a modified *‘scattered
field”’ formulation that couples the excitation into the equation
in a different manner.

1. INTRODUCTION

DVANCES in computer hardware, improvements in

efficient sparse matrix technology, and the development
of accurate radiation boundary conditions that mimic a semi-
infinite space have prompted renewed interest in numerical
solutions of the scalar and vector Helmholtz equations for
electromagnetic scattering [1]-[13]. It is currently believed
that electrically large or complex scatterer geometries can be
analyzed more efficiently using these differential equation
formulations than the traditional volume integral equation
approaches [14]. Researchers have observed, however, that
the accuracy of the differential equation formulations tends to
degrade with increases in the electrical size of the region
surrounding the scatterer [5], [8], [10]. Errors similar to
standing waves were initially attributed to spurious reflec-
tions from the radiation boundaries, which sometimes must
be located an appreciable distance from the scatterer to
ensure accuracy [8], [15]-[16]. A recent study suggests that
these errors are actually due to the discretization of the
Helmholtz equation [5]. As an initial step in a systematic
study of discretization error in electrically large regions, we
examined the scattering of a plane wave from a simple
dielectric slab [17]. Results of the study confirm that the
discretization error grows in proportion to the electrical size
of the region under consideration. Several ways of reducing
the error are suggested.
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II. FORMULATION

Consider a uniform plane wave having z-component of the
form

Er(x) = By *,

(1)
inormally incident on a dielectric slab of relative permittivity
¢, and relative permeability u,, located somewhere within
the interval @ < x < b. Following the usual definitions, E;
represents the excitation in the absence of the scatterer and
EY* denotes the field produced in the presence of the scat-
terer. E7 is the difference defined so that

Ep (x) + E; (x) = EZ* (x). (2)

The electric field can be obtained from the scalar Helmholtz
equation

d [ 1 dE®™
d_ - d + kZErE';Ot = 0, a<x< b, (3)
X \ P, X

subject to the boundary conditions

dE?

| e = KBS @
dE®
}f'x=b = _JkE:‘ (5)

To combine these constraints into a single equation
amenable to discretization, (3) is multiplied by a testing
function 7" and integrated over the computational domain to
produce a ‘“‘weak’” form [8]. The boundary conditions and
the incident field can be incorporated into the boundary term
arising from integration-by-parts, to produce

/b 1 dT dE™
2 lu, dx dx

+ jk T(a)EX(a) = 2jk T(a)E,e /. (6)

- kze,TE;m} dx + jk T(b) E®(b)

Equation (6) represents a formulation in terms of the total
field as the primary unknown. It is also possible to use the
scattered field as the primary unknown, based on a slightly
different derivation [4], [8] that produces

/b 1 dT dE:
u, dx dx

+ jk T(b)E:(D)

- kze,TEj} dx
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+ jk T(a)E(a)
b (d |1 dEF
= T|—|—— k% E™ dx. (7
/a dxu,dx+erz'x()

The left-hand sides of (6) and (7) are identical in form, and
will discretize to produce the same matrix operator. How-
ever, the excitation is incorporated in a completely different
manner in the right-hand sides of these equations.

We consider a traditional finite element discretization using
Lagrangian basis or ‘‘shape’” functions [18], and for brevity
omit the details of the numerical implementation. For linear
shape functions, the resulting matrix is tridiagonal. For
quadratic shape functions, the matrix is pentadiagonal. The
simple matrix structure facilitates the treatment of large
systems representing electrically large geometries.

III. RESULTS
Slnce exact solutions are readily available for the one-di-
mensional slab geometry, the error in the numerical solution
-as a function of position can be defined

| E‘tzm(x)exact - E;()t(x)
| E*(x)

numerical l

error(x) = (8)
Consider a plane wave incident on a slab having e, = 2,
p,=1, and a thickness of 1.0° A, where N denotes the
wavelength in free space. The slab is located between x =0
and x =1 A, with the boundaries of the computational
domain located at @ = —20 AN and b =21 A. For this
 geometry, the finite element representation extends over 41
wavelengths. We employ equal-sized cells throughout the
free-space regions of the domain, with a slightly finer dis-
cretization with the slab to ensure a uniform representation
with respect to the dielectric wavelength A, = N/(e, )%

- Fig. 1 depicts the error as a function of location for several
different discretizations of (6), all of which employ linear
basis and testing functions. With the exception of the 5
cells/\ curve, the general behavior of the error is to gradu-
ally increase from left to right throughout the domain. In the
5 cells/ X\ curve, the error oscillates in a sinusoidal fashion,
reaching a maximum of approximately 2.0 at several loca-
tions throughout the region and returning to relatively small
errors between these locations. As the cell density increases,
the error grows at a much slower rate with distance into the
computational domain.

Fig. 2 illustrates the error in the finite element solution of
(7) using linear basis and testing functions, for the identical
geometry used to produce Fig. 1. Although the error associ-
ated with the*‘scattered field formulation’ appears to grow
with distance at a similar rate as the error of the ‘‘total field
formulation’” depicted in Fig. 1, there are two main differ-
ences. First, the error in Fig. 2 begins to grow from the
middle of the computational domain, at the location of the
slab. Second, the error in Fig. 2 reaches a maximum of about

exact l

4.0, as compared to a maximum value of about 2.0 for Fig.

1. , .
The general trends depicted in Figs. 1 and 2 are consistent
with progressive phase error that grows in a roughly linear
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Fig. 1. Error (8) versus location for several discretizations of the “‘total”’
field formulation (6). A slab with ¢, =2 and p, = 1 is located between
x=0and x =1 N where \ denotes the wavelength in the background

medium. Computational domain is located between — 20 and 21 A. Numeri-
cal results were obtained using linear basis and testing functions.

fashion throughout the computational domain. The sinusoidal
behavior illustrated in the 5 cells/\ curve of both figures can
be attributed to phase error reaching 180 degrees at the
location of the first maximum, and increasing to 360 degrees
at the first minimum in the plot. (Assuming that the error is
entirely in the phase of the total field, (8) achieves a theoreti-
cal peak value of 2.0 when the phase error reaches 180
degrees. To explain the error exhibited in Fig. 2, note that
there are instances when the true total field is in phase
opposition to the incident field.- Under these circumstances, a
phase error of 180 degrees in the scattered field can produce
an error of 4.0 from (8)). The other curves shown in Figs. 1-
and 2 illustrate a similar behavior, but with periods larger
than the problem domain. Other test cases confirm that the
growth rate of the phase error depends only on the cell
density and not on the electrical size of the region [17].
Consequently, the maximum cumulative discretization error
will be proportional to the electrical size of the domam under
consideration. ‘

The primary difference between the ‘‘total” and
“‘scattered’’ field formulations appears to be the manner in
which the incident field is incorporated into each equation.
The total field formulation of (6) samples the incident field at
the boundary of the computational domain (at x = —20 in
Fig. 1), which is relatively far from the scatterer. In the
scattered field formulation of (7), however, the incident field
is sampled throughout the slab (0 < x < 1). In either formu-
lation, the phase error grows in proportion to the distance
away from the reference location.

Of course, the error illustrated in Figs. 1 and 2 is not
entlrely progressive .phase error, and in inhomogeneous re-
gions the behavior is usually far more complex [17]. This
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Fig. 2. Error (8) versus location for several discretizations of the
““scattered’” field formulation (7), applied to the identical slab geometry and
computational domain used in Fig. 1. Numerical results were obtained using
linear basis and testing functions.
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Fig. 3. Error (8) versus location for several discretizations of the *‘total’’
field formulation (6), applied to the identical slab geometry and computa-
tional domain used in Fig. 1. Numerical results were obtamed using quadratic
basis and testing functions. :

particular test case exhibits extremely large errors; in fact,
¢very result in these figures contains an unacceptable level of
error. A possible remedy is the use of higher order basis and
testing functions. The error arising from the total field formu-
lation (6) using quadratic functions is iltustrated in Fig. 3.
Three quadratic basis functions overlap each cell in the
domain, so the 2.5 cells/X curve in Fig. 3 represents the
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same density of unknowns as the 5 cells/\ curve of Fig. 1.
Although the accuracy attained with quadratic functions also
appears to be ultimately limited by progressive. phase error,
the rate of growth of the error is significantly slower with the
higher order algebraic functions. In addition, the absolute
level of error is much smaller than that observed using the
linear basis functions.

IV. CoNcLUSION

This study has confirmed that discretization error in the
finite element solution of the Helmholtz equation grows in
proportion to the electrical size of the computational domain
under consideration. Within an electrically large homoge-
neous region, the dominant error appears to be progressive

- phase error. As might be expected, a reduction in error is

possible through the use of smaller cell sizes or the use of
higher order ‘polynomial basis and testing functions. Al-
though the growth of phase error is similar for the ‘“‘total”
and ‘‘scattered’’ field formulations, the location of the phase
reference is different. Since the scattered field formulation
locates the phase reference within the scatterer, that formula-
tion is likely to produce more accurate numerical solutions in
the immediate vicinity of the scatterer than the total field
formulation, especially if the scatterer is far from the bound-
aries of the computational domain.
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