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Abstract—Discretization error arising fralm a finite element

solntion of the scalar Helmholtz equation for open-region ge-

ometries is studied for the simple case of scattering from dielec-

tric slabs. In electrically-large homogeneous regions, the pri-

mary source of error is found to be phase error that increases

progressively in a direction away from the bonndary where the

excitation is coupled into the computational domain. The error
can be reduced by using smaller cell sizes, employing higher

order polynomial basis functions, or using a modified “scattered
field” formulation that couples the excitation into the equation

in a different manner.

I. INTRODUCTION

A DVANCES in computer hardware, improvements in

efficient sparse matrix technology, and the development

of accurate radiation boundary conditions that mimic a semi-

infinite space have prompted renewed interest in numerical

solutions of the scalar and vector Helrnboltz equations for

electromagnetic scattering [1] - [13]. It is currently believed

that electrically large or complex scatterer geometries can be

analyzed more efficiently using these differential equation

formulations than the traditional volume integral equation

approaches [14]. Researchers have observed, however, that

the accuracy of the differential equation formulations tends to

degrade with increases in the electrical size of the region

surrounding the scatterer [5], [8], [10]. Errors similar to

standing waves were initially attributed to spurious reflec-

tions from the radiation boundaries, which sometimes must

be located an appreciable distance from the scatterer to

ensure accuracy [8], [15] - [16]. A recent study suggests that

these errors are actually due to the discretization of the

Helmboltz equation [5]. As an initial step in a systematic

study of discretization error in electrically large regions, we

examined the scattering of a plane wave from a simple

dielectric slab [17]. Results of the study confirm that the

discretization error grows in proportion to the electrical size

of the region under consideration. Several ways of reducing

the error are suggested.
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II. FORMULATION
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Consider a uniform plane wave having z-component of the

forIn

E~(~) = Eoe-jkx, (1)

~normally incident on a dielectric slab of relative permittivity

er and relative permeability ~r, located somewhere within

the interval a < x < b. Following the usual definitions, E:

represents the excitation in the absence of the scatterer and

E; denotes the field produced in the presence of the scat-

terer. E; is the difference defined so that

EY(X) +~:(~) ‘EY(X). (2)

The electric field can

equation

be obtained from the scalar Heltnboltz

+ k2c,E~ = O, a<x <b, (3)

subject to the boundary conditions

(4)

(5)

To combine these constraints into a single equation

amenable to discretization, (3) is multiplied by a testing

function T and integrated over the computational domain to

produce a “weak” form [8]. The boundary conditions and

the incident field can be incorporated into the boundary term

arising from integration-by-parts, to produce

+ jk T(a) E~(a) = 2jk T(a) Eoe-~~”. (6)

Equation (6) represents a formulation in terms of the total

field as the primary unknown. It is also possible to use the

scattered field as the primary unknown, based on a slightly

different derivation [4], [8] that produces

b

/{

1 dT dE;
—

}
k2e,TE; dx

a ; dx dx

+ jk T(b),E~(b)
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+.jk T(a) E:(fz)

‘1%!=)“’’’E+’”‘7)
The left-hand sides of (6) and (7) are identical in form, and

will discretize to produce the same matrix operator. How-

ever, the excitation is incorporated in a completely different

manner in the right-hand sides of these equations.

We consider a traditional finite element discretization using

Lagrangian basis or “shape” functions [18], and for brevity

omit the details of ‘the numerical implementation. For linear

shape iimctions, the resulting matrix is tridiagonal. For

quadratic shape functions, the matrix is pentadiagonal. The

simple matrix structure facilitates the treatment of large

systems representing electrically large geometries.

HI. RESULTS

Since exact solutions are readily available for the one-di-

mension,d slab geometry, the error in the numerical solution

as a function of position can be defined

IET(X)-, - ~Y(x)nutnericd I . (8)
error (x) =

I JZ’Yx)exa.t I

Consider a plane wave incident on a slab having e, = 2,

IL, = 1, and a thickness of 1.0’ h, where h denotes the

wavelength in free space. The slab is located between x = O

and x = 1 h, with the boundaries of the computational

domain located at a = – 20 h and b = 21 h. For this

geometry, the finite element representation extends over 41

wavelengths. We employ equal-sized cells throughout the

free-space regions of the domain, with a slightly finer dis-

cretization with the slab to ensure a uniform representation

with respect to the dielectric wavelength & = X/(erp,)l/2.

Fig. 1 depicts the error as a function of location for several

different discretizations of (6), all of which employ linear

basis and testing functions. With the exception” of the 5

cells/ h curve, the general behavior of the error is to gradu-

ally increase from left to right throughout the domain. In the

5 cells/h curve, the error oscillates in a sinusoidal fashion,

reaching a maximum of approximately 2.0 at several loca-

tions throughout the region and returning to relatively small

errors between these locations. As the cell density increases,

the error grows at a much slower rate with distance into the

computational domain.

Fig. 2 illustrates the error in the finite element solution of

(7) using linear basis and testing functions, for the identical

geometry used to produce Fig. 1. Although the error associ-

ated with the” scattered field formulation” appears to grow

with distance at a similar rate as the error of the “total field

formulation” depicted in Fig. 1, there are two main differ-

ences. First, the error in Fig. 2 begins to grow from the

middle of the computational domain, at the location of the

slab. Second, the error in Fig. 2 reaches a maximum of about

4.0, as compared to a maximum value of about 2.0 for Fig.

1.

The general trends depicted in Figs. 1 and 2 are consistent

with progressive phase error that grows in a roughly linear

Fig. 1,

.“’’’’’”’’’’” 5 cellsllambtla
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Error (8) versus location for several discretizations of the “total”

field formulation (6). A’ slab with e, = 2 and p, = 1 is located between
.x = O and x = 1 h, where A denotes the wavelength in the background
medium. Computational domain is located between – 20 and 21 h. Numeri-
cal results were obtained using linear basis and testing functions.

fashion throughout the computational domain. The sinusoidal

behavior illustrated in the 5 cells/h curve of both figures can

be attributed to phase error reaching 180 degrees at the

location of the first maximum, and increasing to 360 degrees

at the first minimum in the plot. (Assuming that the error is

entirely in the phase of the total field, (8) achieves a theoreti-

cal peak value of 2.0 when the phase error reaches 180

degrees. To explain the error exhibited in Fig. 2, note that

there are instances when the true total field is in phase

opposition to the incident field. Under these circumstances, a

phase error of 180 degrees in the scattered field can produce

an error of 4.0 from (8)). The other curves shown in Figs. 1

and 2 illustrate a similar behavior, but with periods larger

than the problem domain. Other test cases confirm that the

growth rate of the phase error depends only on the cell

density and not on the electrical size of the region [17].

Consequently, the maximum cumulative discretization error

will be proportional to the electrical size of the domain under

consideration.

The primary difference between the “total” and

“scattered” field formulations appears to be the manner in

which the incident field is incorporated into each equation.

The total field formulation of (6) samples the incident field at

the boundary of the computational domain (at x = – 20 in

Fig. 1), which is relatively far from the scatterer. In the

scattered field formulation of (7), however, the incident field
is sampled throughout the slab (O < x < 1). In either formu-

lation, the phase error grows in proportion to the distance

away from the reference location.

Of course, the error illustrated in Figs. 1 and 2 is not

entirely progressive -phase error, and in inhomogeneous re-

gions the behavior is usually far more complex [17]. This
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Fig. 2. Error (8) versus location for several discretizations of the

“scattered” field formulation (7), applied to the identicat slab geomet~ and
computstionat domain used in Fig. 1. Numericrd results were obtained using

linear basis and testing functions.
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Fig. 3. Error (8) versus location for several discretizations of the “total”

field formulation (6), applied to the identical slab geometry and computa-

tional domain used in Fig. 1. Numerical results were obtained using quadratic

basis and testing functions.

particular test case exhibits extremely large errors; in fact,

every result in these figures contains an unacceptable level of

error. A possible remedy is the use of higher order basis and

testing functions. The error arising from the total field formu-

lation (6) using quadratic functions is illustrated in Fig. 3.

Three quadratic basis functions overlap each cell in the

domain, so the 2.5 cells/X curve in Fig. 3 represents the
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same density of unknowns as the 5 cells/A curve of Fig. 1.

Although the accuracy attained with quadratic functions also

appears to be ultimately limited by progressive phase error,

the rate of growth of the error is significantly slower with the

higher order algebraic functions, In addition, the absolute

level of error is much smaller than that observed using the

linear basis functions.

IV. CONCLUSION

This study has confirmed that discretization error in the

finite element solution of the Hehnholtz equation grows in

proportion to the electrical size of the computational domain

under consideration. Within an electrically large homoge-

neous region, the dominant error appears to be progressive

phase error. As might be expected, a reduction in error is

possible through the use of smaller cell sizes or the use of

higher order polynomial basis and testing fanctions. Al-

though the growth of phase error is similar for the “total”

and “scattered” field formulations, the location of the phase

reference is different. Since the scattered field formulation

locates the phase reference within the scatterer, that formula-

tion is likely to produce more accurate numerical solutions in

the immediate vicinity of the scatterer than the total field

formulation, especially if the scatterer is far from the bound-

aries of the computational domain.
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